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Emergent singular solutions of nonlocal density-magnetization equations in one dimension
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We investigate the emergence of singular solutions in a nonlocal model for a magnetic system. We study a
modified Gilbert-type equation for the magnetization vector and find that the evolution depends strongly on the
length scales of the nonlocal effects. We pass to a coupled density-magnetization model and perform a linear
stability analysis, noting the effect of the length scales of nonlocality on the system’s stability properties. We
carry out numerical simulations of the coupled system and find that singular solutions emerge from smooth
initial data. The singular solutions represent a collection of interacting particles (clumpons). By restricting
ourselves to the two-clumpon case, we are reduced to a two-dimensional dynamical system that is readily
analyzed, and thus we classify the different clumpon interactions possible.
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I. INTRODUCTION

In recent years, the modeling of nanoscale physics has
become important, both because of industrial applications
[1-4], and because of the development of experiments that
probe these small scales [5]. One particular problem is the
modeling of aggregation, in which microscopic particles col-
lapse under the potential they exert on each other, and form
mesoscopic structures that in turn behave like particles.

In a series of papers, Holm, Putkaradze, and Tronci
[6-11] have focused on the derivation of aggregation equa-
tions that possess emergent singular solutions. Continuum
aggregation equations have been used to model gravitational
collapse and the subsequent emergence of stars [12], the lo-
calization of biological populations [13-15], and the self-
assembly of nanoparticles [16]. These are complexes of
atoms or molecules forming mesoscale structures with par-
ticlelike behavior. In particular, Holm and Putkaradze have
shown [10,11] how several aggregation and self-assembly
phenomena can be modeled by a continuity equation for the
particle density p(x,7) of the form

1% .
a—’j = div(pu[p] V ®[p]+ DV p).

where ® is the collective potential (e.g., Ad=p, for gravita-
tional interactions), while the mobility u is related to the
typical dimension of the particles. The role of friction is
fundamental to this model, which is proposed for applica-
tions in highly dissipative systems. When the diffusion coef-
ficient D is set equal to zero, this equation becomes a char-
acteristic equation of the form

d
Ep,=0 along ¥,=—u V.

This states that for friction-dominated systems the velocity
can be assumed as proportional to the collective force (Vo
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—V®). This model is often referred to as Darcy’s law, and it
appears as a unifying principle for a wide range of aggrega-
tion phenomena at different scales. The utility of the Holm-
Putkaradze model lies in its emphasis on nonlocal physics,
and the emergence of singular solutions from smooth initial
data. Because of the singular (delta function) behavior of the
model, it is an appropriate way to describe the universal
phenomena of aggregation and the subsequent formation of
particlelike structures. Indeed in this framework, it is pos-
sible to prescribe the dynamics of the particlelike structures
after collapse. Thus, the model provides a description of di-
rected self-assembly in nanophysics [16,17], in which the
detailed physics is less important than the effective medium
properties of the dynamics. In this work we focus on equa-
tions introduced by Holm, Putkaradze, and Tronci for the
aggregation of oriented (or polarized) particles [6,9].

Anisotropic interactions often appear in several contexts,
especially in nanotechnology, where the dynamics of mag-
netic particles is also considered. The model proposed in
[6,9] extends Darcy’s law to recover the dissipative Gilbert
dynamics for the evolution of the magnetization vector in a
ferromagnetic medium. This model describes physical sys-
tems exhibiting not only aggregation (as in ordinary Darcy’s
law), but also alignment phenomena. Possible applications
can be considered in nanosciences and protein folding, when
the relative orientation of molecules plays a crucial role in
the dynamics leading to the final configuration. In formulas,
one has the following equations for the density p and the
polarization m:

ap ( SE 5E>}
Loa v — V— 1
o IV{p Mo 3 Vo (1a)

and
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where E(p,m) is the energy functional of the system and
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SE/ 6p, OE/ &im are its functional derivatives (e.g. in Darcy’s
law, one has ®=5E/ 8p). This paper focuses on the analogy
with magnetization dynamics and compares the model with
the Gilbert equation. We present some features of this sys-
tem, which is known [18] to possess singular solutions of the
form

plx,1) = f a(s,t)8x — Q(s,1))ds,
m(x,t):Jb(s,t)&(x—Q(s,t))ds,

where the variable s is a curvilinear coordinate on a moving
curve, so that the quantities p and m are supported on a
filament (as it happens in the case of fluids with vortex
lines). By analogy, the coordinate s can also be a coordinate
on a moving surface, so that the dynamical variables are
supported on a “polarized” sheet. Instead of analyzing the
behavior of these three-dimensional structures, this paper
presents the dynamics of singular solutions in only one di-
mension so to present the interactions of single oriented par-
ticles. Additionally, we treat the initial state of the system as
a continuum, a good approximation in nanophysics applica-
tions [19].

Because of the analogy with the dissipative Gilbert equa-
tion, we refer to the orientation vector in our continuum pic-
ture as the magnetization. We investigate Egs. (1) in one
dimension numerically, and study their evolution and aggre-
gation properties. One aspect of nonlocal problems, already
mentioned in [11], is the effect of competition between the
length scales of nonlocality on the system evolution. We
shall highlight this effect with a linear stability analysis of
the full density-magnetization equations.

This paper is organized as follows. In Sec. II we introduce
a nonlocal Gilbert (NG) equation to describe nonlocal inter-
actions in a magnetic system. We investigate the competition
between the system’s two length scales of nonlocality. In
Sec. III we introduce a coupled density-magnetization sys-
tem that generates singular solutions. We examine the com-
petition of length scales through a linear stability analysis
and through the study of the dynamical equations for a
simple singular solution that describes the interaction of two
particlelike objects (clumpons). We perform numerical simu-
lations that highlight the emergence of singular solutions
from smooth initial data. We draw our conclusions in Sec.
Iv.

II. THE NONLOCAL GILBERT EQUATION

In this section we study a magnetization equation that in
form is similar to the Gilbert equation, that is, the Landau-
Lifshitz-Gilbert equation in the overdamped limit [20,21].
The equation we focus on incorporates nonlocal effects, and
was introduced in [6]. We study the evolution and energetics
of this equation, and examine the importance of the problem
length scales in determining the evolution.

We study the following nonlocal Gilbert (NG) equation:
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a—m=m><<um><ﬁ>, (2)

where m is the magnetization density, m,, is the mobility,
defined as

My = (1 - 182(9)26)—1'”,

and OE/dm is the variational derivative of the energy,
SE
—=(1-a*?)7"'m.
om

The meaning of the length scales o and B is related to the
physical nature of the quantities £ and pu,,. Indeed, the ex-
pression given for OE/dm represents a potential energy
Q[m] obeying the Helmholtz equation (1-a?A)Q=m.
Thus, the parameter « represents the characteristic interac-
tion length that regulates magnetization dynamics. For the
mobility u,,, a different argument holds. In the ordinary Gil-
bert equation, this quantity is proportional to the magnetiza-
tion, u,,<m. However this choice does not give any infor-
mation about the magnetic-moment dynamics of the single
particle, or, in other terms, this choice does not allow for the
oriented single-particle solution. On the other hand, it is pos-
sible that the magnetization can reach a configuration where
aligned jammed structures interact with each other after their
formation and such a configuration is analogous to the inter-
action among single particles in the system. Consequently,
the meaning of the mobility u,, is an averaging process that
accommodates more than one length scale in order to allow
the single-particle dynamics as a solution. The length scale 8
appearing in the smoothing process is therefore related to the
size of the aligned jammed states, or simply the typical
length of interacting particles. As we shall see, the particle
behavior cannot emerge spontaneously in the nonlocal Gil-
bert equation. Rather, one could start with an initial set of
aligned jammed states so to follow their dynamics. The nu-
merical values of the parameters o and 8 may depend on
several physical quantities, according to the system under
consideration. These length scales are in general modeling
choices that need to accommodate the experimental results.
The smoothened magnetization u,, and the force 6E/ dm can
be computed using the theory of Green’s functions. In par-
ticular,

Mo (x,1) = f dyHpg(x —y)m(y,t) :== Hg* m(x,t).
Q

Here * denotes the convolution of functions, and the kernel
Hpg(x) satisfies the equation

d2
(1 - BZ@>H,;(X) = 0lx). 3)
The function &(x) is the Dirac delta function. Equation (3) is
solved subject to conditions imposed on the boundary of the
domain (). In this paper we shall work with a periodic do-
main Q=[-L/2,L/2] or Q=[0,L], although other boundary
conditions are possible. Periodic boundary conditions are
justified by the purpose of this section, which presents a
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nonlocal version of the Gilbert equation. The numerical
simulations show the comparison with the results of the local
case (B—0). This comparison is nor affected by the condi-
tions at the boundaries and the physical configuration can be
easily interpreted in terms of a magnetized ring undergoing
Gilbert dynamics. Note that Eq. (2) has a family of nontrivial
equilibrium states given by

meq(x) = mg sin(kx + ¢),

where m, is a constant vector, k is some wave number, and
¢ is a constant phase. The derivation of this solution is
subject to the boundary conditions discussed in Sec. III.
However, periodic solutions are generic solutions of simple
nonlocal models [22]. By setting 8=0 and replacing (1
—azo’ff)‘l with —&f, we recover the more familiar Landau-

Lifshitz-Gilbert equation, in the overdamped limit [20],
om &*m
—=-mX|mX F . (4)

Equation (2) possesses several features that will be useful in
understanding the numerical simulations. There is an energy
functional

E(t)= %f dxm - (1 — azai)‘lm, (5)
Q

which evolves in time according to the relation

dE - f dpm,, - (1- azai)‘lm][m (1= azﬁi)_lm]
dr Jo
| st mr - 2w,
Q

o [ x (1= @] D ¢ (-2
Q
(6)

This is not necessarily a nonincreasing function of time, al-
though setting S=0 gives

(d—E) =f dx[m-(l—azz?)z()_lm]2
dt /g0 Ja

—f dxm?[(1 - &*7)'m ],
Q

X

= f dxm?[(1 - a23*) 'm]*(cos’p—1) = 0,
Q

)

where ¢ is the angle between m and (1—a2&')2c)‘1m. In the
special case when B8—0, we therefore expect E(f) to be a
nonincreasing function of time. On the other hand, inspec-
tion of Eq. (6) shows that as a— 0, the energy tends to a
constant. Additionally, the magnitude of the vector m is con-
served. This can be shown by multiplying Eq. (2) by m, and
by exploiting the antisymmetry of the cross product. Thus,
we are interested only in the orientation of the vector m; this
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FIG. 1. (Color online) The initial data for the magnetization
equation (2). This initialization is obtained by allowing the orienta-
tion angles of the magnetization vector to vary sinusoidally in
space, as in Eq. (9). Here the wave number of the variation is equal
to the fundamental wave number 27/L.

can be parametrized by two angles on the sphere: the azi-
muthal angle 6(x,7), and the polar angle ¢(x,z), where

m,=|m|cos ¢ sin 6, my=|mlsin ¢sin 6, m,=|m|cos 6,
(8)

and where ¢ €[0,27), and [0, 7]

We carry out numerical simulations of Egs. (2) and (4) on
a periodic domain [0,L], and outline the findings in what
follows. Motivated by the change of coordinates (8), we
choose the initial data

¢o(x) = w(1 +sin(2rmx/L)), 6y(x) = %77(1 + sin(27rsx/L)),

)

where r and s are integers. These data are shown in Fig. 1.

Case 1: Numerical simulations of Eq.(4). Equation (4) is
usually solved by explicit or implicit finite differences [21].
We solve the equation by these methods, and by the explicit
spectral method [23]. The accuracy and computational cost is
roughly the same in each case, and for simplicity, we there-
fore employ explicit finite differences; it is this method we
use throughout the paper. Given the initial conditions (9),
each component of the magnetization m=(m,,m,,m.) tends
to a constant, the energy

3
== dx
2Ja

decays with time, and |m|* retains its initial value |m|*=1.
After some transience, the decay of the energy functional

becomes exponential in time. These results are shown in Fig.
2

om | ?

ox

Case 2: Numerical simulations of Eq.(2) with a<p.
Given the smooth initial data (9), in time each component of
the magnetization m=(m,,m,,m,) decays to zero, while the
energy

1
E= —f dym - (1-28)'m
2Jq

tends to a constant value. Given our choice of initial condi-
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FIG. 2. (Color online) Numerical simulations of Case 1, the Landau-Lifshitz-Gilbert equation in the overdamped limit. In this case, the
magnetization decays to a constant state. (a) and (b) show the magnetization at times r=0.03 and 7=0.15, respectively; (c) is the energy
functional, which exhibits exponential decay after some transience. The final orientation is (¢, 6)=(m, 7/2).

tions, the energy in fact increases to attain this constant
value. Again the quantity |m|? stays constant. These results
are shown in Fig. 3. We find similar results when we set «
=0.

Case 3: Numerical simulations of Eq. (2) with a> .
Given the smooth initial data (9), in time each component of
the magnetization m=(m,,m,,m,) develops finer and finer
scales. The development of small scales is driven by the
decreasing nature of the energy functional, which decreases
as a power law at late times, and is reflected in snapshots of
the power spectrum of the magnetization vector, shown in
Fig. 4. As the system evolves, there is a transfer of large
amplitudes to higher wave numbers. This transfer slows
down at late times, suggesting that the rate at which the
solution roughens tends to zero, as r— . The evolution pre-
serves the symmetry of the magnetization vector m(x,7) un-
der parity transformations. This is seen by comparing Figs. 1
and 4. The energy is a decaying function of time, while the
quantity |m|? stays constant. We find similar results for the
case when =0.

These results can be explained qualitatively as follows. In
Case (1), the energy functional exacts a penalty for the for-
mation of gradients. The energy decreases with time and the
the system evolves into a state in which no magnetization
gradients are present, that is, a constant state. On the other
hand, we have demonstrated that in Case (2), when a<p,

the energy increases to a constant value. Since in the nonlo-
cal model, the energy functional represents the cost of form-
ing smooth spatial structures, an increase in energy produces
a smoother magnetization field, a process that continues until
the magnetization reaches a constant value. Finally, in Case
(3), when a> 3, the energy functional decreases, and this
decrease corresponds to a roughening of the magnetization
field, as seen in Fig. 4. In Sec. III we shall show that Case (2)
is stable to small perturbations around a constant state, while
Case (3) is unstable. Furthermore, we note that Case (2) and
Case (3) differ only by a minus sign in Eq. (2), and are
therefore related by time reversal. These results are summa-
rized in Table L.

The solutions of Egs. (2) and (4) do not become singular.
This is not surprising: the manifest conservation of |m/|? in
Egs. (2) and (4) provides a pointwise bound on the magni-
tude of the solution, preventing blowup. Any addition to Eq.
(2) that breaks this conservation law gives rise to the possi-
bility of singular solutions, and it is to this possibility that we
now turn.

III. COUPLED DENSITY-MAGNETIZATION EQUATIONS

In this section we study a coupled density-magnetization
equation pair that admit singular solutions. We investigate
the linear stability of the equations and examine the condi-
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FIG. 3. (Color online) Numerical simulations of Case (2), the nonlocal Gilbert equation with @< . In this case, the energy increases to
a constant value, and the magnetization becomes constant. (a) and (b) show the magnetization at times =8 and r=40; (c) is the energy

functional. The final orientation is (¢, 6)=(ar, 7/2).
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FIG. 4. (Color online) Numerical simulations of Case 3, the nonlocal Gilbert equation with > B. In this case, the energy decreases
indefinitely, and the magnetization vector develops finer and finer scales. (a), (b), and (c) show the magnetization at time 7=10000; (d) is the
energy functional, which decreases in time as a power law at late times. (€) shows the power spectrum of m,; the integer index n labels the
spatial scales: if k, is a wave number, then the corresponding integer label is n=k,L/2 1.

tions for instability. We find that the stability or otherwise of SE 2 21
a constant state is controlled by the magnetization and den- Mp=1, 6_p =-(1- apa)zr) P> (11a)
sity values of that state, and by the relative magnitude of the
problem length scales. Using numerical and analytical tech-
. . . . . and, as before,
niques, we investigate the emergence and self-interaction of
singular solutions. E
The equations we study are as follows: w,=(1- Biﬁzx)_lm’ % =(1- ai&i)_lm. (11b)
dp d OE Jd OE ) )
= o P\ + My, 3l | (10a) These equations have been introduced by Holm, Putkaradze,
roox *op * and Tronci in [6], using a kinetic-theory description. The
density and the magnetization vector are driven by the ve-
locity
gm a[( J OE aaEﬂ X( X(SE)
at  ox ax o dx om om v 9 OF 9 SE 1)
=, T Yy T
(10b) Hooxsp  Hm " ox om
where we set The velocity advects the ratio |m|/p by
TABLE I. Summary of the forms of Eq. (2) studied.
Case Length scales Energy Outcome as t— Linear stability
(1) B=0, 5E/ Sm=—"m Decreasing Constant state Stable
() a<pf Increasing Constant state Stable
(3) a> B Decreasing Development of finer and finer scales Unstable
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d d \|m|
—=V—/—=0.
ot ox/) p

We have the system energy

1 1
= —f dxm - (1 - afnﬁi)‘lm - —f dxp(1 - 0‘507;2)_197
2)a 2)a

(13)

and, given a non-negative density, the second term is always
nonpositive. This represents an energy of attraction, and we
therefore expect singularities in the magnetization vector to
arise from a collapse of the particle density due to the ever-
decreasing energy of attraction. There are three length scales
in the problem that control the time evolution: the ranges «,,
and a, of the potentials in Eq. (13), and the smoothening
length 8,,.

A. Linear stability analysis

We study the linear stability of the constant state (m,p)
=(mg,py). We evaluate the smoothened values of this con-
stant solution as follows:

(1) po=f(),

,d*f

Po= f(x) ad25

f(x) = po+ A sinh(x/@,) + B cosh(x/a,).

For periodic or infinite boundary conditions, the constants A
and B are in fact zero and thus

(1-a,) " po=pos (14)

and similarly uy=(5E/ 5m)m0=m0. The result (14) guaran-
tees that the constant state (m,, p,) is indeed a solution of Eq.
(10).

PHYSICAL REVIEW E 77, 036211 (2008)

We study a solution (m, p)=(my+ dm , py+ Sp), which rep-
resents a perturbation away from the constant state. By as-
suming that om and Jp are initially small in magnitude, we
obtain the following linearized equations for the perturbation
density and magnetization:

d & ~ &+
S 9p==ro_5(1 - ) 159+Poa s(1- 03,37 "'my - om

d
—om=m,

#
P -3l ad) " op

(1 - a,) 'my -

+my X {my X [(1 - a;, )" om — (1 - B,,57) " om]}.

(15)
For my+# 0 we may choose two unit vectors 72, and 7, such
and 7, form an orthonormal triad (that is,

we have effected a change of basis). We then study the quan-
tities dp, Sy, 6&;, and O&,, where

5X:m0'5m, 56]:ﬁ]'5m, 5§2Zﬁ2'5m.

We obtain the linear equations

J & 2 & 2 o
Eﬁp——po@(l—ap&z) dp+po-5(1-a a, )" ox.
J
o, Ox==lmo*~ 2<1—a§a§ )7 0p+ o 2(1 a,7)" Ox,
J
o =10- g™ - (- )10, i=1.2.

By focusing on a single-mode disturbance with wave number
k we obtain the following system of equations:

pok’ pok’ 0 0
l+ak®  1+ak’

op LS NS 0 0 op

d ox _ 1+ alzjk2 1+ a,znk2 ox
dt| & 1 1 S5 |

3 0 0 — — 0 &

562 1+ Bmk 1+ amk 552

0 0 0 ! !
1+ B2 1+d2k2

with eigenvalues
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_ pok’ |m |’k
T1+ak 1+ el
1 1

T LB 1+l

g,=0, o

o (16)

The eigenvalues are the growth rate of the disturbance
(8p, 8x, 8¢, 6&,) [24]. There are two routes to instability,
when o;>0, or when 0,>0. The first route leads to an
instability when

Po 1+ a%kz

mol> 1+ ap i

gy >0,

while the second route leads to instability when

a,>0, a,>pB,

Physically, the first route to instability has as its origin the
repulsive (negative-definite) contribution to the energy pro-
vided by the density p, as given by Eq. (11a); on the other
hand, the second route to instability derives from the ener-
getically unfavorable nature of a constant magnetization state
when B, < a,,, as in Sec. II.

We have plotted the growth rates for the case when p
=|m|*=1, and compared the theory with numerical simula-
tions. There is excellent agreement at low wave numbers,
although the numerical simulations become less accurate at
high wave numbers. This can be remedied by increasing the
resolution of the simulations. These plots are shown in Figs.
5 and 6. The growth rates o , are parabolic in k at small k;
o, saturates at large k, while o, attains a maximum and
decays at large k. The growth rates can be positive or nega-
tive, depending on the initial configuration, and on the rela-
tionship between the problem length scales. In contrast to
some standard instabilities of pattern formation (e.g., Cahn-
Hilliard [25] or Swift-Hohenberg [26]), the o;-unstable state
becomes more unstable at higher wave numbers (smaller
scales), thus preventing the “freezing-out” of the instability
by a reduction of the box size [25]. The growth at small
scales is limited, however, by the saturation in o as k— .
Heuristically, this can be explained as follows: at higher
wave number, the disturbance (8p, Sy, 6¢;, 6&,) gives rise to
more and more peaks per unit length. This makes merging
events increasingly likely, so that peaks combine to form
larger peaks, enhancing the growth of the disturbance.

Recall in Sec. II that the different behaviors of the mag-
netization equation (2) are the result of a competition be-
tween the length scales «,, and B,,. For «,,<f3,, the initial
(large-amplitude) disturbance tends to a constant, while for
a,,> B, the initial disturbance develops finer and finer
scales. In this section, we have shown that the coupled
density-magnetization equations are linearly stable when
a,, < B,,, while the reverse case is unstable. In contrast to the
first route to instability, the growth rate o, if positive, admits
a maximum. This is obtained by setting 07(k)=0. Then the
maximum growth rate occurs at a scale
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FIG. 5. (Color online) The first route to instability. (a) shows the
growth rate o for @, <, < @,, with negativity indicating a stable
equilibrium; (b) gives the growth rate o for «,<a,,<B,, with
positivity indicating an unstable equilibrium. We have set |m,|
=po=1.

= -1 _
)\max = 27Tkmax - 277\/ amﬂm'

Thus, the scale at which the disturbance is most unstable is
determined by the geometric mean of «,, and S,,. Given a
disturbance (8p, Sy, 6¢,, 6&,) with a range of modes initially
present, the instability selects the disturbance on the scale
Amax- This disturbance develops a large amplitude and a sin-
gular solution subsequently emerges. It is to this aspect of
the problem that we now turn.

B. Singular solutions

In this section we show that a finite weighted sum of delta
functions satisfies the partial differential equations (10). Each
delta function has the interpretation of a particle or clumpon,
whose weights and positions satisfy a finite set of ordinary
differential equations. We investigate the two-clumpon case
analytically and show that the clumpons tend to a state in
which they merge, diverge, or are separated by a fixed dis-
tance. In each case, we determine the final state of the
clumpon magnetization.

To verify that singular solutions are possible, let us sub-
stitute the ansatz
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FIG. 6. (Color online) The second route to instability. (a) shows
the growth rate o, for «,,<[,,, with negativity indicating a stable
equilibrium; (b) gives the growth rate o, for a,,> f3,,, with positiv-
ity indicating an unstable equilibrium. We have set |m,|=py=1.

M M
p(x,1) = 2, alt) S —x,(1)),  m(x,1) = 2 bi(t) 8(x — x,(1))
i=1 i=1

(17)

into the weak form of equations (10). Here we sum over the
different components of the singular solution (which we call
clumpons). In this section we work on the infinite domain
x € (=, ). The weak form of the equations is obtained by
testing Egs. (10) with once-differentiable functions ¢(x) and

Ylx),
4 J ) _ f c
a) dxp(x,t)Pp(x) = - ) dxd’' (x,1)

< d OE

d%f‘” dxm(x,1) - ¥(x) = — f” dxi (x) - m(x,1)

—o0

d OE
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Substitution of the ansatz (17) into the weak equations (18)
yields the relations

da; 0 dx; Vi) db, ) X( " 6E)( )

=Y o= V), =0, Xi)s

dt dr dr B2 om
ie{l,.. .M}, (19)

where V and (u X (SE/dm)) are obtained from the ansatz
(17) and are evaluated at x;. Note that the density weights a;
and the magnitude of the weights b; remain constant in time.

We develop further understanding of the clumpon dynam-
ics by studying the two-clumpon version of Egs. (19). Since
the weights a;, a,, ||, and |b2| are constant, two variables
suffice to describe the interaction: the relative separation x
=X, —X, of the clumpons, and the cosine of the angle between
the clumpon magnetizations, cos ¢=b,-b,/|b,||b,|. Using
the properties of the kernel H(0)=1, H'(0)=0, we derive the
equations

d
= MH, (1)~ BH,, (Hg (1)~ BH, ()y. y=cos o,
p m m m
(20a)
dy _ 2
Bl - [ (0~ Hy @], (200)

where M=a,+a,, B;=|b,|*+|b,|?, and B,=21b,||b,| are con-
stants. Equations (20) form a dynamical system whose prop-
erties we now investigate using phase-plane analysis [27].
We note first of all that the |y|> 1 region of the phase plane
is forbidden, since the y component of the vector field
(dx/dt,dy/dt) vanishes at |y|=1. The vertical lines x=0 and
x= * oo are equilibria, although their stability will depend on
the value of the parameters (a,,,a,,B8,,B,B,,M). The
curve across which dx/dt changes sign is called the
nullcline. This is given by

MH), (x) - B,H,, (x)Hpg (x)
- P m m
' BoH,, (x)

s

which on the domain x e (=%, o) takes the form

Several qualitatively different behaviors are possible, de-
pending on the magnitude of the values taken by the param-
eters (a/m,ap,,Bm,Bl,Bz,M). Here we outline four of these
behavior types.

(i) Case 1: The length scales are in the relation a,, <a,,
and B, <a,. The vector field (dx/dt,dy/dt) and the
nullcline are shown in Fig. 7(a). There is flow into the fixed
points (x,y)=(*d,1), and into the line x=0, while y is a
nondecreasing function of time, which follows from Eq.
(20b). The ultimate state of the system is thus x=*d, ¢=0
(alignment), or x=0 (merging). In the latter case the final
orientation is given by the integral of Eq. (20b):
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FIG. 7. (Color online) The nullcline dx/dt=0 of the two-
clumpon dynamical system with a,, < a,. The region contained in-
side the dotted lines y= = 1 gives the allowed values of the dynami-
cal variables (x,y). (a) shows the case when B3,,<a,,. The stable
equilibria of the system are (x,y)=(*d,1) and the line x=0. All
initial conditions flow into one of these equilibrium states; (b)
shows the case when «,, < 3,,. Initial conditions confined to the line
y=1 flow into the fixed point (*=d, 1), while all other initial condi-
tions flow into the line x=0.

g5 st

—Ham(x(r»]], po=li=0).  (21)

(ii) Case 2: The length scales are in the relation a,, <a,,
a,, < 3,,- The vector field and the nullcline are shown in Fig.
7(b). All flow not confined to the line y=1 is into the line
x=0, since y is now a nonincreasing function of time. The
ultimate state of the system is thus x= *d, ¢=0 (alignment),
or x=0 (merging). In the latter case the final orientation is
given by the formula (21).

(iii) Case 3: The length scales are in the relation «,
<a, and B,<a,. The vector field and the nullcline are
shown in Fig. 8(a). Inside the region bounded by the line y
=0 and the nullcline, the flow is into the line x=0 (merging),
and the fixed points (*=d, 1) are unstable. The flow below the
line y=0 is toward the line x=0. Outside of these regions,
however, the flow is into the lines x= * o, which shows that
for a suitable choice of parameters and initial conditions, the
clumpons can be made to diverge.

(iv) Case 4: The length scales are in the relation «

1
<a,, and «,<p,. The vector field and the nullcline are

PHYSICAL REVIEW E 77, 036211 (2008)

(b)

FIG. 8. (Color online) The nullcline dx/dt=0 of the two-
clumpon dynamical system with a,<a,,. The region contained in-
side the dotted lines y= %1 gives the allowed values of the dynami-
cal variables (x,y). (a) shows the case when ,,<a,,. The lines x
=0 and x= = form the stable equilibria of the system. All initial
conditions flow into one of these states; (b) shows the case when
a,, < f3,,. Initial conditions confined to the line y=1 flow into the
fixed points (0,1) and (*o,1), while all other initial conditions
flow into the line x=0.

shown in Fig. 8(b). The quantity y is a nonincreasing func-
tion of time. All flow along the line y=1 is directed away
from the fixed points (*d,1) and is into the fixed points
(0,1), or (*£0o,1). All other initial conditions flow into x
=0, although initial conditions that start above the curve
formed by the nullcline flow in an arc and eventually reach a
fixed point (x=0,y<0).

We summarize the cases we have discussed in Table II.
Using numerical simulations of Egs. (20), we have verified
that Cases (1)—(4) do indeed occur. The list of cases we have
considered is not exhaustive: depending on the parameters
By, B,, and M, other phase portraits may arise. Indeed, it is
clear from Fig. 7 that through saddle-node bifurcations, the
fixed points (x,y)=(*d,1) may disappear, or additional
fixed points (x,y)=(*d’,—1) may appear. Our analysis
shows, however, that it is possible to choose a set of param-
eters (@, a,,.,B,,,B,,B,,M) such that two clumpons either
merge, diverge, or are separated by a fixed distance. Al-
though we have studied the relatively simple two-clumpon
case, it is an important case to consider, since the clumpon
interactions are pairwise; indeed, given the finite range of the
interaction, a system with arbitrarily many particles will be-
have like a collection of isolated particle pairs. We can there-
fore say that the qualitative late-time behavior of a larger
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TABLE II. Summary of the distinct phase portraits of Eq. (20) studied.

Case Q, VS a, a,, Vs B, Equilibria Flow

(1) a,<a, Bu<a, (x,y)=(%d,1); x=0; x=* o0 Flow into x=0 and (x,y)=(*d,1)
2) a,<a, a, < B, (x,y)=(%d,1); x=0; x=* o0 Flow into x=0 and (x,y)=(*d,1)
3) a,<ay, Bu<a, (x,y)=(%d,1); x=0; x=*+ o0 Flow into x=0 and x= *
(4) a,<ay, @, < B, (x,y)=(%d,1); x=0; x=*+ o0 Flow into x=0 and x= *

system consists of clumpons that execute these three basic
behaviors.

C. Numerical simulations

To examine the emergence and subsequent interaction of
the clumpons, we carry out numerical simulations of Eq. (10)
for a variety of initial conditions. We use an explicit finite-
difference algorithm with a small amount of artificial diffu-
sion. We solve the following weak form of Eq. (10), obtained
by testing Eq. (18) with Hp :

p &p ,
P Du e | vty -tV

IR F ,
= Danif (9)62 + f dyHﬁm(x - y)mi()’st)v())st)
Q

ot
+de ( ) [ x( ><5E>]
— e.m —_— s
o DHp, XY rX

where p=H B, P and e; is the unit vector in the /" direction.
We work on a periodic domain Q=[-L/2,L/2], at a reso-
lution of 250 gridpoints; going to higher resolution does not
noticeably increase the accuracy of the results.

The first set of initial conditions we study is the follow-
ing:

m(x,0) = (sin(4kox + ¢,),sin(4kox + ¢y),sin(4kox + ¢,)),

p(x,0) = 0.5 +0.35 cos(2kyx), (22)

where ¢,, ¢,, and ¢, are random phases in the interval
[0,27], and ky=27/L is the fundamental wave number. The
initial conditions for the magnetization vector are chosen to
represent the lack of a preferred direction in the problem.
The time evolution of equations (10) for this set of initial
conditions is shown in Fig. 9. After a short time, the initial
data become singular, and subsequently, the solution (p,m)
can be represented as a sum of clumpons,

M
p(x,1) = 2 a;6(x = x(1)),
i=1

M
m(x,0) = >, b(t)(x — x,(1)), M=2.
i=1

Here M =2 is the number of clumpons present at the singu-
larity time. This number corresponds to the number of

maxima in the initial density profile. The forces exerted by
each clumpon on the other balance because of the effect of
the periodic boundary conditions. Indeed, any number of
equally spaced, identical, interacting particles arranged on a
ring are in equilibrium, although this equilibrium is unstable
for an attractive force. Thus, at late times, the clumpons are
stationary, while the magnetization vector g shows align-
ment of clumpon magnetizations.

We gain further understanding of the formation of singu-
lar solutions by studying the system velocity V just before
the onset of the singularity. This is done in Fig.
10. Figure 10 (a) shows the development of the two
clumpons from the initial data. Across each density maxi-
mum, the velocity has the profile V= \(r)x, where \(r) >0 is
an increasing function of time. This calls to mind the advec-
tion problem for the scalar 6(x,r), studied by Batchelor in the
context of passive-scalar mixing [28]

0.2
0.15
= 0.1

0.05

(a)

04 02 0 02 04
(b) X

FIG. 9. (Color online) Evolution of sinusoidally varying initial
conditions for the density and magnetization, as in Eq. (22). (a)
shows the evolution of H,#p for t €[0,0.15], by which time the
initial data have formed two clumpons; (b) shows the evolution of
M. The profiles of w, and u, are similar. Note that the peaks in the
density profile correépond to the troughs in the magnetization pro-
file. This agrees with the linear stability analysis, wherein distur-
bances in the density give rise to disturbances in the magnetization.
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FIG. 10. (Color online) Evolution of sinusoidally varying initial
conditions for the density and magnetization, as in Eq. (22). (a)
shows the system velocity V given in Eq. (12), just before the
singularity time; (b) shows the magnetization u at the same time.
The density maxima emerge at the locations where the convergence
of =V (flow into x=0 and x= * L/2) occurs, and the magnetization
develops extrema there.

a0 a0

—=Apx—, Ayg>0.
gt gy M

. o 2,02 . .
Given initial data 6(x,0)=6ye™ "6, the solution evolves in
time as

0x.1) = e "0,

so that gradients are amplified exponentially in time,

06 26,
X
ox

2,0 p2 —2\t
Not ,—x“/(€e "0
e()e (0 )’
0

in a similar manner to the problem studied.

The evolution of the set of initial conditions (22) has
therefore demonstrated the following: the local velocity V is
such that before the onset of the singularity, matter is com-
pressed into regions where p(x,0) is large, to such an extent
that the matter eventually accumulates at isolated points, and
the singular solution emerges. Moreover, the density
maxima, rather than the magnetization extrema, drive the
formation of singularities. This is not surprising, given that
the attractive part of the system’s energy comes from density
variations.

To highlight the interaction between clumpons, we exam-
ine the following set of initial conditions:

PHYSICAL REVIEW E 77, 036211 (2008)

2.5
2
- 1.5
1
0.5
T 04 02 0 02 04
(a) X
1
0.2
0.9
0.4
0.8
- 0.6
0.7 0.8
0.6 -1
1.2
0.5
04 02 0 02 04
(b) X

FIG. 11. (Color online) Evolution of a flat magnetization field
and a sinusoidally varying density, as in Eq. (23). (a) shows the
evolution of H,*p for 7€ [0.5,1]; (b) shows the evolution of u,.
The profiles of u, and u. are similar. At #=0.5, the initial data have
formed eight equally spaced, identical clumpons, corresponding to
the eight density maxima in the initial configuration. By impul-
sively shifting the clumpon at x=0 by a small amount, the equilib-
rium is disrupted and the clumpons merge repeatedly until only one
clumpon remains.

m(x,0) =my=const, p(x,0)=0.5+0.35 cos(8kyx),

(23)

where ky=2/L is the fundamental wave number. Since this
set of initial conditions contains a large number of density
maxima, we expect a large number of closely spaced
clumpons to emerge, and this will illuminate the clumpon
interactions. The time evolution of equations (10) for this set
of initial conditions is shown in Fig. 11. As before, the solu-
tion becomes singular after a short time, and is subsequently
represented by a sum of clumpons,

M M
plx,1) = E a;0(x—x1)), m(x,1)= E b(1) o(x — x,(1)),
i=1 i=1

M =38.

Here M =8 is the number of clumpons at the singularity time.
This number corresponds to the number of maxima in the
initial density profile. As before, this configuration of equally
spaced, identical clumpons is an equilibrium state, due to
periodic boundary conditions. Therefore, once the particle-
like state has formed, we impulsively shift the clumpon at
x=0 by a small amount, and precipitate the merging of
clumpons. (See Fig. 12). The eight clumpons then merge
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FIG. 12. (Color online) Evolution of a flat magnetization field
and a sinusoidally varying density, as in Eq. (23). (a) shows the
system velocity V given in Eq. (12) just before the singularity time;
(b) gives the magnetization u at the same time. The density maxima
emerge at the locations where the convergence of —V occurs, and
the magnetization develops extrema there.

repeatedly until only a single clumpon remains. The ten-
dency for the clumpons to merge is explained by the velocity
V, which changes sign across a clumpon. Thus, if a clumpon
is within the range of the force exerted by its neighbors, the
local velocity, if unbalanced, will advect a given clumpon in
the direction of one of its neighbors, and the clumpons
merge. This process is shown in Fig. 13.

It is important to emphasize that the role of periodic
boundary conditions here should not be overestimated. Once
the unstable multiclumpon equilibrium state has been ac-
counted for, the effect of the periodic boundary conditions is
unimportant, and our choice of boundary conditions is rep-
resentative of the infinite medium. This agrees with the pur-
pose of this paper, which presents the clumpon-clumpon in-
teraction, without the involvement of other external forces.
Indeed, the results presented here are always valid as long as
the clumpons are far enough from the boundary so that there
is no interaction between clumpons and the boundary.

IV. CONCLUSIONS

We have investigated the nonlocal Gilbert (NG) equation
introduced by Holm, Putkaradze, and Tronci in [6] using a
combination of numerical simulations and simple analytical
arguments. The NG equation contains two competing length

PHYSICAL REVIEW E 77, 036211 (2008)

1
60
0.9 "
0.8 20

- 0
g 20
0.6 -40
60

= & @ @ & & & & |
04 02 0 02 04

X

FIG. 13. (Color online) Evolution of a flat magnetization field
and a sinusoidally varying density, as in Eq. (23). Shown is the
velocity profile for ¢ € [0.5,1]; the system velocity is given by Eq.
(12). The velocity —V flows into each density maximum, concen-
trating matter at isolated points and precipitating the formation of
eight equally spaced identical clumpons. On a periodic domain,
such an arrangement is an equilibrium state, although it is unstable.
Thus, by impulsively shifting the clumpon at x=0 by a small
amount, we force the clumpons to collapse into larger clumpons,
until only a single clumpon remains.

scales of nonlocality: there is a length scale « associated
with the range of the interaction potential, and a length scale
BB that governs the smoothened magnetization vector that ap-
pears in the equation. When a<<g all initial configurations
of the magnetization tend to a constant value, while for 3
< «a the initial configuration of the magnetization field devel-
ops finer and finer scales. These two effects are in balance
when a=p, and the system does not evolve away from its
initial state. Furthermore, the NG equation conserves the
norm of the magnetization vector m, thus providing a point-
wise bound on the solution and preventing the formation of
singular solutions.

To study the formation of singular solutions, we couple
the NG equation to a scalar density equation. Associated
with the scalar density is a negative energy of attraction that
drives the formation of singular solutions and breaks the
pointwise bound on the m. Three length scales of nonlocality
now enter into the problem: the range of the force associated
with the scalar density, the range of the force due to the
magnetization, and the smoothening length. As before, the
competition of length scales is crucial to the evolution of the
system; this is seen in the linear stability analysis of the
coupled equations, in which the relative magnitude of the
length scales determines the stability or otherwise of a con-
stant state.

Using numerical simulations, we have demonstrated the
emergence of singular solutions from smooth initial data, and
have explained this behavior by the negative energy of at-
traction produced by the scalar density. The singular solution
consists of a weighted sum of delta functions, given in Eq.
(17), which we interpret as interacting particles or clumpons.
The clumpons evolve under simple finite-dimensional dy-
namics. We have shown that a system of two clumpons is
governed by a two-dimensional dynamical system that has a
multiplicity of steady states. Depending on the length scales
of nonlocality and the clumpon weights, the two clumpons
can merge, diverge, or align and remain separated by a fixed
distance. Similarly, one can consider three-particle collisions,
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which are not presented in this paper. The treatment for the
simultaneous collision of three clumpons or more requires no
change with respect to the approach presented here. Also,
when the number of clumpons is sufficiently large, the sys-
tem might be related with coarsening dynamics. However,
our results are restricted to a small number of clumpons and
thus shed no light on coarsening laws. In particular, the re-
sults in this paper depend on the initial positions of the
clumpons and show no self-similarity or scaling law behav-
ior.

Our paper thus gives a qualitative description of the dy-
namics. Future work will focus on the regularity of solutions
of the NG equation, and the existence and regularity of so-
lutions for the coupled density-magnetization equations. Ber-
tozzi and Laurent [29] have studied the simpler (uncoupled)
nonlocal scalar density equation, proving existence, unique-
ness, and blowup results using techniques from functional

PHYSICAL REVIEW E 77, 036211 (2008)

analysis, and a similar analysis will illuminate the equations
we have studied. Interestingly, localized particle type solu-
tions have recently shown to appear also in nonlocal popu-
lation dynamics [30]. Another issue is the insertion of a sto-
chastic source in the equations: this modifies the emergence
of singular solutions and is a topic of future research.
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